ST-PMC1 single-axis motion controller operating manual
Ⅰ. Features .. 3
Ⅱ. Front panel diagram.. 3
Ⅲ. Back panel diagram and signal descriptions ... 4
Ⅳ. The controller connection diagram: .. 5
Ⅴ. The operation flow chart ... 5
Ⅵ. Parameter setting: .. 7
Ⅶ. Program editing and Detailed instructions: ... 8
Ⅷ. The manual operation mode: ... 10
Ⅸ. Automatic operation mode ... 10
Ⅹ. Installation dimensions ... 11
Ⅺ. Editing and application examples: .. 12
Ⅻ. Directive search form .. 14
XⅢ. Parameters search form ... 15
XⅣ. Button search form ... 16
I. Features

• Number of controlled axis: Single axis; can achieve a variety of complex operation: positioning control and non-positioning control;
• The maximum output frequency: 40KHZ;
• Output frequency resolution: 1Hz;
• Programmable maximum number of rows: 99;
• Signal input: 6 (optical isolation);
• Signal output: 3 (optical isolation);
• A continuous displacement range: -7,999,999 ~ 7,999,999;
• Operating state: Autorun mode, manual operation, the program edit mode, parameter setting status;
• Lifting speed curve: 2 (optimization);
• Display digits: 8 digital display, manual / automatic status display, run / stop status display, the number of steps / counts / procedures display, edit the program, parameter display, input / output status display, pulse and direction display;
• Autorun feature: You can edit, you can control the start and stop automatically run through the panel buttons and processing and other operations at the terminal level;
• Manual operation functions: position adjustments (manual jog speed and jog the number of steps can be set);
• Parameter setting function: Starting frequency, acceleration and deceleration curve, reverse clearance, manually run length, manual speed, back to zero speed and interrupt jump the line all can be set;
• Program editing functions: You can insert, delete, modify the program. The controller can identify the error Instruction;
• Return to Zero features: It can be from the positive and negative directions, automatic return to zero
• The number of programming instructions: 14 instruction;
• Outside the operating functions: interrupt operation through parameter setting and switch connected to the terminals A and B;
• Power supply: DC24V;

II. Front panel diagram

1. 8 digital led Segment displays;
2. 6 input status indicator;
3. 3 output status indicator;
4. CP pulse signal indicator;
5. CW direction signal indicator;
6. Keys: 10 keys total, and most of the composite keys, they represent different functions in different states, in the following description, we just take one of the functions represents a key.

Figure I: operation panel
III. Back panel diagram and signal descriptions

1. CP, CW, OPTO for stepper motor drive signal;
 - CP: pulse signal
 - CW: direction signal
 - OPTO: Public male end before the two signals
2. RUN: Start running the program, The same function as "Run" of the operation panel;
3. STOP: Pause program is run automatically, The same function as "Pause" of the operation panel, After starting again, the program continues to run;
4. A: A operation
 - B: B operation
 - "A operation" and "B operation" this is a major feature of the controller:
 For stepper motors, we generally quantitative positioning control, such as controlling the displacement of the motor must be running at a constant speed , In this way it is easy to solve, just put the amount and speed of displacement of the programming can be.
 But there are quite a lot of control is not positioning in advance, such as controlling the stepper motor in one direction from the starting point to start running until he hit a switch after stroke stop, then reverse direction back to the starting point. Another example requires the stepper motor running back and forth between the two limit switch several times, and so on. In these operations, we do not know in advance the specific value of the stepper motor displacement, and how they should be programmed it? The controller uses: to interrupt the operation, which we call "A Operation" and "B operation "for example," A operations", workers workflow is: when the program is running. If "A operation" signal input, motor decelerates to stop, Program interruption, the controller remembers interrupted coordinate values, the program jumps to the "A operation" entry address specified programs run the program;
5. IN1 and IN2 Switching signal input terminal
6. OUT1, OUT2 and OUT3 Switching signal output terminal,
7. COM +, COM-: the power supply of external input and output devices, this power supply is DC24V, COM + is the positive terminal of the power supply; COM - negative side;
8. +24V: The positive power supply, GND: Negative power supply;
 The signal RUN, STOP, A , B , IN1, IN2 called the input signal, they have the same input interface circuit. OUT1, OUT2,OUT3 called the output signal. They have the same output interface circuit.
 Both input and output optical isolation circuit to ensure that the internal and external controllers do not interfere with each other;
 The state of the input signal and output signal, corresponding indicator on the panel. For input, input low (switch is closed) Indicator light; For output signal, the output 0 is low, the light is off, the opposite will light.
When the switch is turned on, Input level is low, on the front panel indicator lights, the program is defined as 0.

Output of low output, load conduction, front panel indicator lights, the program is defined as 1.

IV. The controller connection diagram:

![Controller Connection Diagram]

V. The operation flow chart

Controller always operate in one of four states: automatic mode, manual mode, the program edit mode, parameter setting state. Power or press the **Reset**, Controller to be run in automatic mode, the cursor coordinates 0, then you can start the program to run automatically or switch to manual mode, program editing state and parameter setting status can only switch in manual mode. Editing completed or parameter setting procedure is completed, press the **Quit** to return to manual mode (the program will be saved), in manual mode, if you switch to program edit mode, simply press the **Edit** button, if you switch to the parameter setting state, press **Set** more than 2 seconds.

(Note: The above mentioned Edit, Set, Quit, is the same button, we introduce a feature, the button’s name only choose one, the same below)
Power on or Rest

A: After power on or Rest, Coordinates to reset. As the coordinate zero, in standby mode; B: Memory is not cleared, the data transferred to the last stored memory (Please refer to the "Program Edit")

Auto Mode: 000000
This step is step number display. You can switch the display mode for the count or program

Press RUN

Automatically run the program and displays the current status: the coordinate values, count or program lines

Press Edit/Quit more than 2 seconds

Parameter setting status

Press Edit/Quit

Manual mode

Press Edit/Quit

Press < or > Select the number

Press < or > Program edit state

Press Edit/Quit more than 2 seconds

Press Edit/Quit Manual mode

Manual mode

Press < or > Move the cursor

Press Edit/Quit more than 2 seconds

Press Edit/Quit Manual mode

Motor run in accordance with the appropriate amount of displacement in the direction and speed of preset

Press STOP

Program pauses

Press Home

Motor back to zero in accordance with a pre-set speed

A operation or B operation

Motor interrupt the current operation, for deceleration stop, remember the current coordinate value, then the program pointer operations into A or B operation specified by the entrance to the program.

Press STOP

Press HOME

Press STOP

Pause manually run

Press HOME

Press HOME

Motor back to zero in accordance with a pre-set speed

B: Memory is not cleared, the data transferred to the last stored memory (Please refer to the "Program Edit")

Press Edit/Quit

Parameter setting status

Press Edit/Quit

Manual mode

Press Edit/Quit

Press < or > Select the number

Press < or > Program edit state

Press Edit/Quit more than 2 seconds

Press Edit/Quit Manual mode

Manual mode

Press < or > Move the cursor

Press Edit/Quit more than 2 seconds

Press Edit/Quit Manual mode

Motor run in accordance with the appropriate amount of displacement in the direction and speed of preset

Press STOP

Program pauses

Press HOME

Motor back to zero in accordance with a pre-set speed

A operation or B operation

Motor interrupt the current operation, for deceleration stop, remember the current coordinate value, then the program pointer operations into A or B operation specified by the entrance to the program.

Press STOP

Press HOME

Press STOP

Pause manually run

Press HOME

Press HOME

Motor back to zero in accordance with a pre-set speed

B: Memory is not cleared, the data transferred to the last stored memory (Please refer to the "Program Edit")

Press Edit/Quit

Parameter setting status

Press Edit/Quit

Manual mode

Press Edit/Quit

Press < or > Select the number

Press < or > Program edit state

Press Edit/Quit more than 2 seconds

Press Edit/Quit Manual mode

Motor run in accordance with the appropriate amount of displacement in the direction and speed of preset

Press STOP

Program pauses

Press HOME

Motor back to zero in accordance with a pre-set speed

A operation or B operation

Motor interrupt the current operation, for deceleration stop, remember the current coordinate value, then the program pointer operations into A or B operation specified by the entrance to the program.
VI. parameter setting:

Out of the way of parameter setting status is: In manual mode, press Edit and hold the button for 2 seconds or more, enter the parameter setting state. After parameter setting is complete, press the Quit button to return to manual mode (parameters will be saved).

Parameters displayed in two rows, the first row shows the name of the parameter, the second line shows the parameter data.

Parameter changes: After entering the parameter setting state, the first line of the display: j f --------. Former two parameter name in flashing: press ∧ ∨ , Will display the next or previous parameter name, press Enter, Will enter the edit state (next row) parameter data, when the first bit of data flashing display, press ∧ ∨ , data will be changed. press < >, Will move to the next one to be modified, after the data modification, press Enter Save changes, press Cancel discard changes and exit.

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Parameter display form</th>
<th>Data range (unit)</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Off frequency</td>
<td>JF X X X X X X</td>
<td>400-3999 (Hz)</td>
<td>If the set value is less than 400Hz, the system will alarm; Users can set different off frequencies according to their actual situation</td>
</tr>
<tr>
<td>2</td>
<td>Rising and falling curve</td>
<td>rS X X X X X</td>
<td>L, H (stripe)</td>
<td>The controller has two internal optimization rising and falling speed curve, L is a slow curve; H to a faster curve, to select a different rate of rise and fall curve based on the actual load situation.</td>
</tr>
<tr>
<td>3</td>
<td>Backlash compensation</td>
<td>CC X X X X X</td>
<td>0-9999 (pulses number)</td>
<td>Mainly used to compensate the rotation mechanism (such as a screw, gear, etc.) The amount of displacement caused by the backlash error compensation is not displayed on the controller.</td>
</tr>
<tr>
<td>4</td>
<td>Manual increment</td>
<td>HL X X X X X X</td>
<td>1-999999 (pulses number)</td>
<td>In manual mode, the manual operation is a displacement of the stepper motor; If the set value is equal to 0, the system will alarm.</td>
</tr>
<tr>
<td>5</td>
<td>Manual speed</td>
<td>HF X X X X X X</td>
<td>1-399999 (Hz)</td>
<td>In manual mode, manual operation is running speed stepper motor; If the set value is equal to 0, the system will alarm.</td>
</tr>
<tr>
<td>6</td>
<td>Back to zero speed</td>
<td>bF X X X X X X</td>
<td>1-399999 (Hz)</td>
<td>When zeroing operation, stepper motor speed; If the set value is equal to 0, the system will alarm.</td>
</tr>
<tr>
<td>7</td>
<td>A Operation” entry address</td>
<td>Na X X X X X</td>
<td>00-99 (Line number)</td>
<td>When the program is running, if the "A Operation” signal input port, the motor for the deceleration stop the program at this interruption, the application remembers interrupted coordinate values, the program will jump to this line number specified by the program at run the program.</td>
</tr>
<tr>
<td>8</td>
<td>B Operation” entry address</td>
<td>nB X X X X X</td>
<td>00-99 (Line number)</td>
<td>When the program is running, such as Gao "B Operation” end signal input, the motor will slow down to stop the program at this interruption, the application remembers interrupted coordinate values, the program will jump to this line number specified by the program run the program.</td>
</tr>
<tr>
<td>9</td>
<td>Pulse mode</td>
<td>CP X X X X X</td>
<td>0, 1</td>
<td>CP = O represented as a single pulse output, CP-side rear panel output step pulse, CW-ended output direction level; CP = I expressed as a single pulse output, CP-ended output on the rear panel forward step pulse, CW-ended output inversion step pulse.</td>
</tr>
</tbody>
</table>

In short, the set parameters through ∧ ∨ < > "Enter", "Cancel" six buttons to complete the six: by moving left and right keys to move the cursor to the appropriate position, then the digital display will beat, and then through the upper and lower keys to change the value: use the Enter key to enter the data modification status, after the data modification is completed, confirm with the Enter key to exit or discard the changes with Cancel button. Please refer to the "List of operational processes."
VII. program editing and Detailed instructions:

Out of the way the program editor is: In manual mode, press the "Edit" button. To enter the program edit state. After the program editing is complete, press the "Quit" button back to manual mode (parameters are automatically saved)

Program area of the controller can edit up to 99 instructions, each instruction in the program there is a line number, line number for automatic numbering starts from 00 arranged in order, you can insert or delete a row in the program, but the line number will be reassigned.

The program format is: Each program is divided into two-line display (except no parameter program), the first line displays the line number and command name, and the second line shows the instruction data. The last instruction of the program is fixed to "END".

In short, modify the program by "∧" "∨" "<" "->" "insert" "delete" "Enter" "Cancel" eight buttons to complete: by moving left and right keys to move the cursor to the appropriate position, then beat the digital display will then change the value via the arrow keys: Use the Enter key enter data modification status, after the data modification is completed, confirm with the Enter key to exit or discard the changes with Cancel button. Please refer to the operation flow chart.

Program editing instructions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Operate procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter edit mode</td>
<td>In manual mode, press the "Edit" button</td>
</tr>
<tr>
<td>Exit edit mode</td>
<td>Under the state program editing line numbers flashing state, press the "Quit" key</td>
</tr>
<tr>
<td></td>
<td>to return to the manual mode, the program will automatically save</td>
</tr>
<tr>
<td>Clear the program</td>
<td>When the program editing line numbers flashing, press and hold "Clear" button</td>
</tr>
<tr>
<td></td>
<td>for 2 seconds or more, until the first 00-line instructions for END time.</td>
</tr>
<tr>
<td>entry a new program</td>
<td>First clear the program area, then only one program, 00 row END command,</td>
</tr>
<tr>
<td></td>
<td>and then press the "Insert" button, Directive 00 line program into a PAUSE, and</td>
</tr>
<tr>
<td></td>
<td>flashing display; press the "∧" "∨" "<" "->"command name was changed; until you find</td>
</tr>
<tr>
<td></td>
<td>the desired command, and then press the" Enter "to enter the command data</td>
</tr>
<tr>
<td></td>
<td>area (no parameters for command, enter the program after the completion of this</td>
</tr>
<tr>
<td></td>
<td>section entry), press ∧∨<>to modify, After the changes are complete press the</td>
</tr>
<tr>
<td></td>
<td>"Enter" button, enter this line program is completed, you can see the next line</td>
</tr>
<tr>
<td></td>
<td>becomes END command, then press the "Insert" key entry program with the</td>
</tr>
<tr>
<td></td>
<td>same way until all program entry is completed.</td>
</tr>
<tr>
<td>Special Note:</td>
<td>When you enter a new program obviously is the correct procedure, but the alarm</td>
</tr>
<tr>
<td></td>
<td>controller error, this happens in a branch instruction: like JUMP instruction,</td>
</tr>
<tr>
<td></td>
<td>J-BIT directive, J-CNT if these three directive Skip the line number where this</td>
</tr>
<tr>
<td></td>
<td>instruction is greater than the current line number, due to the jump target has</td>
</tr>
<tr>
<td></td>
<td>not been entered, the controller will misjudge entry line number is wrong, in</td>
</tr>
<tr>
<td></td>
<td>order to avoid this, we require a new program at the time of entry, these three</td>
</tr>
<tr>
<td></td>
<td>instructions Jump in the line number that appears temporarily replaced with 00,</td>
</tr>
<tr>
<td></td>
<td>after the program is completed entry, Change the line number 00 to the</td>
</tr>
<tr>
<td></td>
<td>correct line number.</td>
</tr>
<tr>
<td>Modify program</td>
<td>Reference above, " entry a new program " approach, modify the current program</td>
</tr>
<tr>
<td>Insert program</td>
<td>When the program edit state line number is flashing, press the "Insert" button to</td>
</tr>
<tr>
<td></td>
<td>insert a new row above the current program, the program modification operations.</td>
</tr>
<tr>
<td>Delete program</td>
<td>When the flashing line number in the program editor, press the "Delete" key, the</td>
</tr>
<tr>
<td></td>
<td>program is deleted, the following program automatically move up.</td>
</tr>
</tbody>
</table>
Detailed instructions for directive (HH- line number, XXXXX-- data)

<table>
<thead>
<tr>
<th>No.</th>
<th>Directive Name</th>
<th>Directive to display the form</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pause directive</td>
<td>HH — PAUSE No arguments</td>
<td>Program pause and wait for the panel start button or terminal operation start signal or A, B operation signal.</td>
</tr>
<tr>
<td>2</td>
<td>Displacement directive</td>
<td>HH_G-LEN ±XXXXXX</td>
<td>When executing this directive, the controller will be conferred the latest SPEED assignment, displacement volume parameter settings specified in this directive set off frequency, acceleration and deceleration curve, backlash compensation, and control the motor running; If this instruction is not SPEED assignment, place start frequency for running speed; Parameters of the first one is the sign bit, 0 for positive displacement, - for negative displacement; Parameters: -7999999 - +7999999 Unit: pulse number if the argument is 0, it will alarm.</td>
</tr>
<tr>
<td>3</td>
<td>Speed assignment directive</td>
<td>HH_SPEED XXXX</td>
<td>All run this program following this directive will set the speed to run until the next occurrence rate assignment directive; Range of parameters: I a 39,999 unit; pulses / sec (Hz) If the parameter is 0, it will alarm.</td>
</tr>
<tr>
<td>4</td>
<td>Delay directive</td>
<td>HH_DELAY XXXXXXXX</td>
<td>Delay time; parameters: I a 7,999,999 Unit; milliseconds; such as Gao parameter set to 0, the system will alarm.</td>
</tr>
<tr>
<td>5</td>
<td>Uncondition jump directive</td>
<td>HH — JUMP XX</td>
<td>Unconditional jump directive, parameter XX represents the program to jump to the line number; XX line numbers when more than END directive line numbers, alert prompts.</td>
</tr>
<tr>
<td>6</td>
<td>Cycle directive</td>
<td>HH — LOOP XXXXXXX</td>
<td>From the current line to the specified line through the loop; first two digits of the line number (requires less than the current line), after five of cycles (0 defined as infinite). When the line number than the current line number, the system will alarm.</td>
</tr>
<tr>
<td>7</td>
<td>Move to a position</td>
<td>HH_G0T0 ±xxxxxx</td>
<td>Run to the specified location, in practical applications, this general location as a reference point in the system; first parameter is the sign bit, a positive number indicates that the zero point lies in the positive direction, negative, negative direction indicates that this point is zero; If the parameter value = 0, which returns zero; Parameter Range: -7,999,999 + 7999999 Unit: pulse number</td>
</tr>
<tr>
<td>8</td>
<td>Output directive</td>
<td>HH — OUT XXXX</td>
<td>The first three parameters from left to right correspond to the output terminals OUT1-OUT3; while the corresponding front panel LEDs 1-3 every three output has three options: O, I, N.; 0- corresponding output terminal is high, the load is not conducting, panel lights off. I- corresponding output terminal is low, the load is turned on, the panel lights. N- Maintain previous working state The last one parameter, control buzzer When 0- execute this command, a short buzzer sound; (Note: in order to execute the program after the end of the next sound) When 1- execute this command, a long buzzer sound; Note: in order to execute the program after the end of the next sound) When N- execute this command, the buzzer does not sound.</td>
</tr>
</tbody>
</table>
IX. Automatic operation mode

Power on the controller or press the reset button, automatically makes the coordinates cleared, and redefines this coordinates of the new coordinate zero, reads the counter value, the controller is in standby mode, press "Run" button or enter a start signal from the terminal, the controller from the first row 00 program starts to run until the run to the last program END, then automatically run ended, the controller returns to standby mode. Please refer to "Figure 6: Controller Operation Flowchart”

In automatic mode, there are three kinds of different sub-states:

1. **Standby mode**: indicates that the controller is ready to run the program, simply press the Run button or the input signal to start the program. After the run, also in this state.

2. **Positioning Jump**: The first two jumps for the line number indicating the position, the fifth bit input port IN1-IN2 is one of them; eighth to jump condition (0 or 1); measured when the input port is set Jump to the directive line when the state number, otherwise, the order of execution. END command line number line number is exceeded, will alarm.

3. **Automatic operation mode**: Power on the controller or press the reset button, automatically makes the coordinates cleared, and redefines this coordinates of the new coordinate zero, reads the counter value, the controller is in standby mode, press "Run" button or enter a start signal from the terminal, the controller from the first row 00 program starts to run until the run to the last program END, then automatically run ended, the controller returns to standby mode. Please refer to "Figure 6: Controller Operation Flowchart”

In automatic mode, there are three kinds of different sub-states:

1. **Standby mode**: indicates that the controller is ready to run the program, simply press the Run button or the input signal to start the program. After the run, also in this state.

2. **Positioning Jump**: The first two jumps for the line number indicating the position, the fifth bit input port IN1-IN2 is one of them; eighth to jump condition (0 or 1); measured when the input port is set Jump to the directive line when the state number, otherwise, the order of execution. END command line number line number is exceeded, will alarm.

3. **Automatic operation mode**: Power on the controller or press the reset button, automatically makes the coordinates cleared, and redefines this coordinates of the new coordinate zero, reads the counter value, the controller is in standby mode, press "Run" button or enter a start signal from the terminal, the controller from the first row 00 program starts to run until the run to the last program END, then automatically run ended, the controller returns to standby mode. Please refer to "Figure 6: Controller Operation Flowchart”

In automatic mode, there are three kinds of different sub-states:

1. **Standby mode**: indicates that the controller is ready to run the program, simply press the Run button or the input signal to start the program. After the run, also in this state.

2. **Positioning Jump**: The first two jumps for the line number indicating the position, the fifth bit input port IN1-IN2 is one of them; eighth to jump condition (0 or 1); measured when the input port is set Jump to the directive line when the state number, otherwise, the order of execution. END command line number line number is exceeded, will alarm.

3. **Automatic operation mode**: Power on the controller or press the reset button, automatically makes the coordinates cleared, and redefines this coordinates of the new coordinate zero, reads the counter value, the controller is in standby mode, press "Run" button or enter a start signal from the terminal, the controller from the first row 00 program starts to run until the run to the last program END, then automatically run ended, the controller returns to standby mode. Please refer to "Figure 6: Controller Operation Flowchart”

In automatic mode, there are three kinds of different sub-states:

1. **Standby mode**: indicates that the controller is ready to run the program, simply press the Run button or the input signal to start the program. After the run, also in this state.

2. **Positioning Jump**: The first two jumps for the line number indicating the position, the fifth bit input port IN1-IN2 is one of them; eighth to jump condition (0 or 1); measured when the input port is set Jump to the directive line when the state number, otherwise, the order of execution. END command line number line number is exceeded, will alarm.

3. **Automatic operation mode**: Power on the controller or press the reset button, automatically makes the coordinates cleared, and redefines this coordinates of the new coordinate zero, reads the counter value, the controller is in standby mode, press "Run" button or enter a start signal from the terminal, the controller from the first row 00 program starts to run until the run to the last program END, then automatically run ended, the controller returns to standby mode. Please refer to "Figure 6: Controller Operation Flowchart”

In automatic mode, there are three kinds of different sub-states:

1. **Standby mode**: indicates that the controller is ready to run the program, simply press the Run button or the input signal to start the program. After the run, also in this state.

2. **Positioning Jump**: The first two jumps for the line number indicating the position, the fifth bit input port IN1-IN2 is one of them; eighth to jump condition (0 or 1); measured when the input port is set Jump to the directive line when the state number, otherwise, the order of execution. END command line number line number is exceeded, will alarm.

3. **Automatic operation mode**: Power on the controller or press the reset button, automatically makes the coordinates cleared, and redefines this coordinates of the new coordinate zero, reads the counter value, the controller is in standby mode, press "Run" button or enter a start signal from the terminal, the controller from the first row 00 program starts to run until the run to the last program END, then automatically run ended, the controller returns to standby mode. Please refer to "Figure 6: Controller Operation Flowchart”

In automatic mode, there are three kinds of different sub-states:

1. **Standby mode**: indicates that the controller is ready to run the program, simply press the Run button or the input signal to start the program. After the run, also in this state.

2. **Positioning Jump**: The first two jumps for the line number indicating the position, the fifth bit input port IN1-IN2 is one of them; eighth to jump condition (0 or 1); measured when the input port is set Jump to the directive line when the state number, otherwise, the order of execution. END command line number line number is exceeded, will alarm.

3. **Automatic operation mode**: Power on the controller or press the reset button, automatically makes the coordinates cleared, and redefines this coordinates of the new coordinate zero, reads the counter value, the controller is in standby mode, press "Run" button or enter a start signal from the terminal, the controller from the first row 00 program starts to run until the run to the last program END, then automatically run ended, the controller returns to standby mode. Please refer to "Figure 6: Controller Operation Flowchart”

In automatic mode, there are three kinds of different sub-states:

1. **Standby mode**: indicates that the controller is ready to run the program, simply press the Run button or the input signal to start the program. After the run, also in this state.

2. **Positioning Jump**: The first two jumps for the line number indicating the position, the fifth bit input port IN1-IN2 is one of them; eighth to jump condition (0 or 1); measured when the input port is set Jump to the directive line when the state number, otherwise, the order of execution. END command line number line number is exceeded, will alarm.

3. **Automatic operation mode**: Power on the controller or press the reset button, automatically makes the coordinates cleared, and redefines this coordinates of the new coordinate zero, reads the counter value, the controller is in standby mode, press "Run" button or enter a start signal from the terminal, the controller from the first row 00 program starts to run until the run to the last program END, then automatically run ended, the controller returns to standby mode. Please refer to "Figure 6: Controller Operation Flowchart”

In automatic mode, there are three kinds of different sub-states:

1. **Standby mode**: indicates that the controller is ready to run the program, simply press the Run button or the input signal to start the program. After the run, also in this state.
2. Autorun program status: indicating that the controller is running the program.
3. The automatic operation stop state: the controller is running the program is the stop button or input from the terminal stop signal interruption. Run the program will wait to be started again at the breakpoint.

In autorun program status: there are three different ways: (display by pressing the same key “step” “count” “∧” to shift)
1. Step number display: controller displays the current coordinate values, unit: pulse number:
2. Count display mode: The controller displays the counter value of the counter unit; a single current number:
3. Program display: controller displays the current program line and in which the program name.
To be able to distinguish between a good three sub-state automaton states and three display mode on the display, we use a different display mode to display the difference between the first two: (see table below)

<table>
<thead>
<tr>
<th>Display</th>
<th>Corresponding state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step number (coordinates) display, To be run in automatic mode</td>
<td>When the actual coordinate values displayed over six digits (including the sign bit), only show the last six digits</td>
</tr>
<tr>
<td></td>
<td>Counter display, To be run in automatic mode</td>
<td>When the value of the counter more than six digits, only show the last six digits</td>
</tr>
<tr>
<td></td>
<td>Program display, To be run in automatic mode</td>
<td>The last six digits of the display, in order to express simple current program with six-figure line, we used 3,4-bit display the current line number: Bit 5 Empty: The first instruction is referred to as 6,7,8-bit display (refer to "directive search form" directive abbreviation)</td>
</tr>
<tr>
<td></td>
<td>Steps number, counting, program three display mode automatic operation</td>
<td>When the three display mode in the automatic operation display the first two are the same, scilicet means the program under way.</td>
</tr>
<tr>
<td></td>
<td>Steps number, counting, program three display mode Automatic stop state</td>
<td>When the current two digits flashing, it means that the program is interrupted, the breakpoint is waiting.</td>
</tr>
</tbody>
</table>

X. Installation dimensions
The controller uses the embedded instrument shell, small size and light weight (500g), recite the front panel is 71mm * 71mm, length of 105mm, specific dimensions shown below:
Example 1:

Parameter requirements: off frequency 2.5KHz, lifting speed faster, backslash compensation is 0;
Operational requirements: to speed 2.9KHz run 98,765 steps, then run 8765 steps in the opposite direction at a speed of 15KHz, stop.
Parameter list: (Enter the parameter list parameter setting status changes) JF = 02500, rS = H, CC = OOOO.
Program Listing:

00 SPEED 02900 ; assignment to run below the speed 2.9KHz
01 G-LEN 0009876 ; motor running 98,765 steps forward
02 SPEED 15000 ; assignment to run below the speed of 15KHz
03 G-LEN -0008765 ; 8765 step motor is running in the opposite direction
04 END ; End of program;

Example 2:

Parameter requirements: When the starting frequency is 2.5KHz, the Lifting speed is Slow and Backslash compensation is 12;
Operating Requirements: When running, Require for that after the buzzer tweet for a short time, run 1234567 step as the speed of 39KHZ, Making three outputs for 101 state, after delaying the time for 55.9 seconds, let the last two outputs state is 11, Program pause here, Until run again, let the motor return to the starting point at the same rate on the other side that is the 888 step positions, After reaching a predetermined position, the buzzer will tweet for a long time, then the program ends!
Parameter List: (Enter the parameter setting mode to modify) JF = 02500, rS = L, CC = 0012.
Program Listing (: enter the program edit state)

00 OUT nnn0 ; Let the buzzer tweet for a short time
01 SPEED 39000 ; Assign the speed as 39KHz
02 G-LEN 01234567 ; Motor runs forward 1234567 step
03 OUT 101n ; Making three outputs for 101 state
04 DELAY 0055900 ; delaying the time for 55.9 seconds
05 OUT n11n ; let the last two outputs state is 11
06 PAUSE ; Program pause here
07 GOTO -0000888 ; let the motor return to the starting point on the other side that is the 888 step positions
08 OUT nnn1 ; Let the buzzer tweet for a long time
09 END ; the program ends!

Example 3:

Operating Requirements: (Ignore the parameter setting) One object, from zero that run for 2.9KHz speed to run forward 100 step (this point as the reference point of the object); After the reference point stopped, the output is 010; Detect the input, if INI = 0, the motor will return to zero at the same speed. If INI ≠ 0, the motor will run forward 10,000 steps at a speed of 15KHz and let buzzer alarm for a short time; And then will return to the reference point at a speed of 35KHz. If INI = 0, then return to zero, Otherwise, continue to follow the way of the first to run.After return to zero ,The buzzer will alarm for a long time.

Program Listing (: enter the program edit state)

00 SPEED 02900 ; Assign the speed as 2.9KHz
01 G-LEN 00000100 ; Motor runs forward 100 steps
02 OUT 010n ; Let output state is 010
03 J-BIT 11 1 0 ;
04 SPEED 15000 ; IN1 ≠ 0, then assign the new speed as 15KHz
05 G-LEN 00010000 ; Motor runs forward 10000 steps again
06 OUT nnn0 ; Let buzzer alarm for a short time
07 SPEED 35000 ; Assign the speed as 35KHz, For setting the speed of returning to the reference point
08 GOTO 00000100 ; Motor return to the reference point at the speed of 15KHz
09 LOOP 03 00000 ; Motor will run for an infinite loop ,until IN1 = 0, it will return to zero
10 SPEED 02900 ; Assign the speed of returning to zero as 2.9KHz
11 GOTO 00000000 ; Motor returns to zero at the of speed 2.9KHz
12 OUT nnn1 ; After return to zero ,The buzzer will alarm for a long time
13 END ; the program ends!

Example 4:

Operating Requirements: (Ignore the parameter setting) One object, from zero that run for a high speed to run forward Until it came to the front of the limit switch, Then return to zero at the same rate, the program ends. (Assume the system beginning frequency is 500Hz, the distance
from the zero to proximity switch is greater than 100,000 steps, less than 100,010 steps). Design analysis: the variable displacement of this movement does not know its precise value, but only know it’s a general range (belong to a unknown variable). We use a method for interrupting operation to solve this problem. We connect the limit switch to the A operating port, Due the interrupt operation, the motor will slow down to stop, If run to the limit switch as a high-speed directly, will produce overshoot, In order to avoid the overshoot, we use this method that the first run as a high-speed, then run as a low-speed (low-speed is below the starting frequency).

Parameter List: (Enter the parameter setting mode to modify) Setting A Operator address nA = 04, other parameters are ignored.

Program Listing : (enter the program edit state)

00 SPEED 39000 ; assign the speed as 39KHz
01 G-LEN 0099000 ; First, high-speed close to, but can’t hit the limit switch
02 SPEED 00400 ; low-speed frequency must below the starting frequency
03 G-LEN 07999999 ; The amount of displacement is set to the maximum, to reach the limit switch
04 SPEED 39000 ; A Operator, assign the return to zero speed as 39KHz
05 GO-AB -A ; In the opposite direction, running the same amount of displacement, back to zero
06 END; the program ends!

XII. directive search form

<table>
<thead>
<tr>
<th>N O.</th>
<th>Directive Name</th>
<th>Example</th>
<th>Instructions, data range, unit</th>
<th>Directive full name</th>
<th>Directive abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pause directive</td>
<td>00 PAUSE</td>
<td>Program pauses, waiting for the start signal</td>
<td>PAUSE</td>
<td>PAU</td>
</tr>
<tr>
<td>2</td>
<td>displacement directive</td>
<td>01 G-LEN -1234567</td>
<td>According to the latest SPEED assignment speed, reverse mobile 1234567 step; pulses number</td>
<td>G-LEN</td>
<td>G-L</td>
</tr>
<tr>
<td>3</td>
<td>Speed assignment directive</td>
<td>02 SPEED 12345</td>
<td>Run this directive following assignment speed; 12345Hz 1·99999, pulses / sec (Hz)</td>
<td>SPEED</td>
<td>SPD</td>
</tr>
<tr>
<td>4</td>
<td>Delay directive</td>
<td>03 DELAY 1234567</td>
<td>Delay time: 1234567 ms 1·9999999, ms</td>
<td>DELAY</td>
<td>OLY</td>
</tr>
<tr>
<td>5</td>
<td>Unconditional jump directive</td>
<td>04 JUMP 12</td>
<td>Unconditional jump to the line XII program runs 00-99, line number</td>
<td>JUMP</td>
<td>JMP</td>
</tr>
<tr>
<td>6</td>
<td>Cycle directive</td>
<td>05 LOOP 03 12345</td>
<td>Jump from the current line to the (05) to 03 lines for 12,345 cycles 1·999999 (0 defined as infinite), Times (only forward loop)</td>
<td>LOOP</td>
<td>LOP</td>
</tr>
<tr>
<td>7</td>
<td>Move to a position</td>
<td>06 GOTO -1234567</td>
<td>Control the motor running to coordinate the position of -9999999 + is -1.234.567 7.999.999, the number of pulses (0 equivalent return to zero)</td>
<td>GOTO</td>
<td>GOT</td>
</tr>
<tr>
<td>8</td>
<td>Output directive</td>
<td>07 OUT 03 01 N 0</td>
<td>Switch output is: OUT = (K OUT2 = 1.0UT3 unchanged internal buzzer a short sound (a = long beep, N = no sound)</td>
<td>OUT</td>
<td>OUT</td>
</tr>
<tr>
<td>NO.</td>
<td>Name</td>
<td>example</td>
<td>Data range</td>
<td>unit</td>
<td>Parameter Description</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>----------</td>
<td>------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Off frequency</td>
<td>JF12345</td>
<td>400-3999</td>
<td>Hz</td>
<td>According to motor size and load inertia, etc. to choose parameters</td>
</tr>
<tr>
<td>2</td>
<td>Rising and falling curve</td>
<td>rS H</td>
<td>L,H Strip</td>
<td></td>
<td>L slower; H faster (optimized design)</td>
</tr>
<tr>
<td>3</td>
<td>Backlash compensatio</td>
<td>CC1234</td>
<td>0-9999</td>
<td>Pluse number</td>
<td>Backlash compensation transmission mechanism</td>
</tr>
<tr>
<td>4</td>
<td>Manual increment</td>
<td>HH 23456</td>
<td>1-999999</td>
<td>Pluse number</td>
<td>When the manual mode, the amount of displacement of the stepper motor</td>
</tr>
<tr>
<td>5</td>
<td>Manual speed</td>
<td>HF12345</td>
<td>1-39999</td>
<td>Hz</td>
<td>When the manual mode, the stepper motor speed</td>
</tr>
<tr>
<td>6</td>
<td>Back to zero speed</td>
<td>bF12345</td>
<td>1-39999</td>
<td>Hz</td>
<td>When return to zero operation running speed of the stepping motor</td>
</tr>
<tr>
<td>7</td>
<td>"A Operation" entry</td>
<td>nA 18</td>
<td>00-99</td>
<td>Line number</td>
<td>A operation is interrupted, the program’s entry address</td>
</tr>
<tr>
<td>8</td>
<td>"B Operation" entry</td>
<td>nB 18</td>
<td>00-99</td>
<td>Line number</td>
<td>B operation is interrupted, the program’s entry address</td>
</tr>
<tr>
<td>9</td>
<td>Pulse mode</td>
<td>CP 0</td>
<td>0, 1</td>
<td></td>
<td>CP = O single pulse, CP = I double pulse</td>
</tr>
</tbody>
</table>

X III. Parameters search form

- **J** - BIT
- **J** - CNT
- **C** - N
- **B** - C
- **GRB**
- **CNI**
- **CNO**
- **CLR**
- **END**
X. IV. Button search form

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
<th>Instruction</th>
<th>Use of state</th>
<th>Use method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run Enter</td>
<td></td>
<td>Start the program runs; startup program continues to run</td>
<td>Auto waiting to run status; run automatically stopped state; When executing directive pause</td>
<td>Click</td>
</tr>
<tr>
<td>Pause Cancel</td>
<td></td>
<td>Pause program is run automatically; pause the program is being run</td>
<td>Automatic operation; manual operation status</td>
<td>Click</td>
</tr>
<tr>
<td>Home Clear</td>
<td></td>
<td>Let motor return to zero (position when power is on)</td>
<td>Auto waiting to run status; The automatic operation stop status;</td>
<td>Click</td>
</tr>
<tr>
<td>Clear Delete</td>
<td></td>
<td>Clear all entered program; Cancel modified parameters; Cancel modify or entry process</td>
<td>Program edit status; program edit status</td>
<td>Click</td>
</tr>
<tr>
<td>Auto Insert</td>
<td></td>
<td>Converted to automatic status:</td>
<td>Manual status;</td>
<td>Click</td>
</tr>
<tr>
<td>Jog</td>
<td></td>
<td>Converted to manual status:</td>
<td>Automatic status;</td>
<td>Click</td>
</tr>
<tr>
<td>Insert</td>
<td></td>
<td>Position in the program above the current row insert a new row program</td>
<td>Program edit status;</td>
<td>Click</td>
</tr>
<tr>
<td>Step Count</td>
<td></td>
<td>Displays the status switches to coordinate (steps) display</td>
<td>Auto waiting to run status</td>
<td>Click</td>
</tr>
<tr>
<td>count</td>
<td></td>
<td>Displays the status switch to count display mode</td>
<td>Auto waiting to run status</td>
<td>Click</td>
</tr>
<tr>
<td>Program</td>
<td></td>
<td>Displays the status switch to program display mode</td>
<td>Auto waiting to run status</td>
<td>Click</td>
</tr>
<tr>
<td>edit</td>
<td></td>
<td>Enter the program edit status</td>
<td>Manual status;</td>
<td>Click</td>
</tr>
<tr>
<td>set</td>
<td></td>
<td>Enter the parameter setting status</td>
<td>Manual status;</td>
<td>Click</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td>From the program edit state or parameter setting state return to manual mode, and save the file to save the modified program or parameters</td>
<td>Program edit status; parameter setting status</td>
<td>Click</td>
</tr>
<tr>
<td>Move cursor</td>
<td></td>
<td>Current position move to the left</td>
<td>Program edit status; parameter setting status</td>
<td>Click</td>
</tr>
<tr>
<td>Quick View</td>
<td></td>
<td>Return after browsing program, only the line number and program name, as this program to see the data, click this</td>
<td>Program edit status</td>
<td>Click</td>
</tr>
<tr>
<td>Move cursor to down</td>
<td></td>
<td>Current position move down one line</td>
<td>Program edit status; parameter setting status</td>
<td>Click</td>
</tr>
<tr>
<td>Counter is cleared</td>
<td>The current counter value is cleared</td>
<td>Auto waiting to run status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move cursor to right</td>
<td>Current position move to the right</td>
<td>Program edit status; parameter setting status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counter save</td>
<td>Save the current counter value</td>
<td>Auto waiting to run status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>Reset Controller</td>
<td>Auto waiting to run status</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Click</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Click</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>